Invited Talk at SPIE Photonics West 2024

Abstract

Real-time imaging of ultrashort events on picosecond timescales has proven pivotal in unveiling various fundamental mechanisms in physics, chemistry, and biology. Current single-shot ultrafast imaging schemes operate only at conventional optical wavelengths, being suitable solely within an optically transparent framework. Here, leveraging on the unique penetration capability of terahertz radiation, we demonstrate a single-shot ultrafast imaging system that can capture multiple frames of a complex ultrafast scene in non-transparent media with sub-picosecond temporal resolutions. By multiplexing an optical probe beam in both the time and spatial-frequency domains, we encode the terahertz-captured dynamics into distinct spatial-frequency regions of a multiplexed optical image, which is then computationally decoded and reconstructed. Our approach opens up the investigation of non-repeatable or destructive events that occur in optically-opaque scenarios.

Date
Jan 27, 2024 — Feb 1, 2024
Location
San Francisco, United States
Junliang Dong
Junliang Dong
Assistant Professor